تجربه تخریب سیمای سرزمین در نالاب بزرگ هویزه با استفاده از دور کاوی

چکیده

پیمان کرمی

من می‌توانم در حفظ نوع زیست نالاب‌ها از معاون بر پیده‌های محیطی و طبیعی همچون خشکسالی‌ها، تغییرات آب‌سازی افزایش یافته در کنار تغییرات در زمین‌های کشاورزی، به‌طور نگران‌دار مدیران رشد لایه‌کشی سیاهنی ریشه‌هایی و تنش بین سطح‌های دام و ارتفاع واقع از بزرگ‌تر و نالاب‌ها، توان برای این اثرات بخش‌هایی از ناحیه‌های سبز و قهوه‌ای در زبان را به دنبال دارد. به‌طور مثال بررسی تغییرات در نالاب بزرگ هویزه در زبان‌های زمانی ۱۳۹۱، ۱۳۹۴، ۱۳۹۵ و ۱۳۹۶، به بینه‌ای برای تصویر این اثرات شده است. مراحل یک پیش‌بازرس در بزرگ هویزه ماهواره‌ای لندست TM، این استفاده شد.

مسند مقالات:
Mehrdadmirsanjari@Yahoo.Com

تاریخ دریافت: ۱۳۹۶/۰۶/۲۹
تاریخ بازیابی: ۱۳۹۶/۰۷/۱۳
کد مقاله: ۱۳۹۶۹۴۳۴

امن مقاله برکته‌ن از طرح بی‌پژوهشی

است

وژگان کلیدی: نالاب هویزه، آماره‌رنک-کنترول، شبکه عصبی مصنوعی، خوزستان

مقدمه

امروزه به دلایل تغییرات ناشی از فعالیت‌های انسانی و تغییرات آب‌سازی، برنامه‌ریزی برای حفاظت از منابع طبیعی از انجام در نگرش ذکر می‌شود. باعث شدن افزایش در کاهش سبز و نورپردازی در نالاب‌ها، به‌طور عمومی برای کاهش شکستگی برای سبز و نورپردازی در نالاب‌ها، تغییرات در نالاب هویزه با استفاده از دور کاوی

تحلل تخصیص سرمایه سازی‌های در تالاب بزرگ هورز به‌عنوان یک استادیوم دوم "کمی و میرنجری"
شاخص‌های NDVI و NDWI و از روش طبقه‌بندی نفوذ شده برای تعیین محدوده تالاب استفاده گردید. نتایج نشان داد به‌همه‌ای تالاب‌ها
تغییرات چندانی نداشته‌ام که افزایش محدوده و محدوده جنگلی پی‌ماین تالاب نیز کاهش داشته‌است.

Quick bird و Kollar Kahar (2012) در مطالعه خود به بررسی تغییرات Tالاب با استفاده از تصاویر ماهواره‌ای Corona
برداختند. بر اساس نتایج حاصل از مطالعه آن‌ها کشاورزی و مناطق درختخاکی زه به ترتیب 33 و 49 درصد کاهش و ساحلی توده آب.
زمین‌های کشت نشده/بی‌باغ و مناطق ساختمان‌ی شده به ترتیب 30 و 38 درصد افزایش داشته است. بر اساس نتایج حاصل از این مطالعه بررسی تالاب‌ها با استفاده از تصاویر با دقت سیار با می‌تواند در بررسی تالاب‌ها و انتخاب تصمیم‌های مدیریتی مفید باشد.

Fickas و همکاران (2016) به مطالعه تالاب‌های موجود در ده و بیست و یک اورگان برداختند تالاب‌های این ناحیه با مسئله کشت‌رسی
کشاورزی و شهرنشینی مواجه هستند. در این مطالعه بررسی تالاب‌های مکفک با استفاده از تصاویر ماهواره‌ای لندست
TM/ETM* و MSS که از 1972 تا سال 2012 مورد بررسی قرار گرفته. بر اساس نتایج بیوش گیاهی تالاب 31 هکتار کاهش داشته است و مناطق بدون بیوش
گیاهی 123 هکتار افزایش داشته که بیش از گچی‌سازی پذیری‌های کشاورزی داشت: آما پس از اعمال
سیاست‌های سال 1992 تغییرات درون تالاب کاهش پیدا کرده است که ممکن است باعث اعمال مقرر داشت.

مجموعه‌ای محتوی زیستی طبیعی امروزه تا حد زیادی تحت تأثیر اعمال و کنترل‌های انسانی قرار گرفته‌اند و نمی‌توانند، بکار رفته در کلیت
آن‌ها دچار تغییرات شده‌اند. در عملکرد و کارکرد این فضاهای تغییرات عمده صورت پذیرفته است (فاسمزاده و همکاران، 1393). تالاب‌ها
نزدیکی از قاعده فوق مستندانه نیستند. در مواردی مبتنی بر اندازه‌گیری‌های مختلف بر اکوستانس ساختار و کارکرد اکوستیسیا و در نتیجه سهامی آن‌ها را
متحول می‌کند. تالاب بزرگ هویزه یکی از تالاب‌های مرزی شورک محسوس می‌شود که بخشی از آب مرخیزی خود را از آبهای ایران و بخشی
دهیگرا از آب‌های ایران و سوریه تأمین می‌کنند و از نظر او، بخشی از آب‌های ایران و سوریه از تأمین و سوختن ایران و سوریه است. شکستگی ترکیب و عراق بسیاری سیاسی و جنگی حاکیت در عراق و درخواست‌های مکرر این کشور از ایران به منظور تأمین آب موردی‌های برای تالاب‌های مکفک از مهم‌ترین بخش‌های پیش روى این تالاب است (بی‌شمار هادی و
حجاری، 1389). اهداف این مطالعه شامل کمیت‌سازی روند تغییرات تالاب از منظر سیاست‌های پیشنهادی و
حق آب آن از جانب کشورهای ایران، ترکیه و عراق می‌باشد.

مواد و روش‌ها
تالاب بزرگ هویزه در جنوب غربی ایران در استان خوزستان در مرز ایران و عراق و در موقعیت جغرافیایی ۳۷ درجه و ۳۰ دقیقه طول شرقی
و ۲۱ درجه و ۵۰ دقیقه عرض شمالی واقع شده است (شکل ۱). حدود دوسم مساحت آن در کشور عراق و یکسمین در دو کشور ایران قرار داشته است. با احتمال که در کشور عراق مساحت آن در ایران به چیزی در حدود ۸۷ هکتار رسیده است (فاسمزاده و همکاران، 1390). تالاب
بر اساس اطلاعات بخش استانی و تالاب‌های دیگر گیاهی پوشانه در سپتامبر همواره تالاب با عمق ۳ تا ۴ متر گیاهی دیده
نمی‌شود. بنابراین، این واحد در نظر گرفته شده است. بر اساس اطلاعات بخش استانی و تالاب‌های دیگر گیاهی پوشانه در سپتامبر همواره تالاب با عمق ۳ تا ۴ متر گیاهی دیده

Downloaded from jweb.iauahvaz.ac.ir at 20:27 +0330 on Sunday October 13th 2019
jweb.iauahvaz.org
به منظور بررسی روند تغییرات تالاب بزرگ هورهزا از تغییرات ماهواره لندنست در سال‌های 1991، 1992 و 2014 با مشخصات جدول 1 استفاده شد. تصویب‌های هندسی و رادیومتریک در مرحله پیش‌بردارش تصویر ماهواره‌ای، به‌عنوان مرحله تصویب و پیش‌سازی اطلاعات سی‌دی است. به‌منظور احتمال وسایل عکاسی و غیر سامانه‌های موجود در تصویر تصویب شد. البته قبل از رسیدن تصویر ماهواره لندنست به دست کاربران تصویر هندسی و اندازه‌گیری لازم توسط سازمان زمین‌شناسی آمریکا بر روی تصاویر اعمال می‌شود (پیش倦د سیلسیان، 1387 و همکاران، 1995). به‌منظور اطلاعات از عدم وجود خطا، از طریق نمایش تکنیک، تاکنون همچنان ترکیب رنگ‌های مختلف و روی صفحه‌سنگ را به همراه ایجاد داده‌های مختلف این تصاویر لایه‌های برداری از جاهد و آب‌های اقلیمی استفاده و بر روی تصاویر ماهواره قرار داده شدند (پیش倦د سیلسیان، 1395). به‌منظور تصویر هندسی از نشانه‌های لیزرگرافی با مقدار 1/50000 تهیه‌شده نموده شده است. به‌منظور اجرای تصاویر ماهواره‌ای مسلم استفاده شد. تصاویر به‌کارگرفته در تحقیق به دست‌آوردها استفاده از نقاط گردشی و نقاط کنار گردشی مجدید تصویر شد. برای این کار از نقاط گردشی مناسب در نقاط مجاوره استفاده گردید. ابتدا تصویر سال اول تالاب با استفاده از نشانه‌های لیزرگرافی (1/50000) و 33 نقطه کنار که تصویر تصویر سی‌دی برای سایر تصاویر از تصویر زمین مرجع شده سال اول به روش تصویر به تصویر ارائه از تصویر زمین مرجع سایر سال‌ها به‌صورت تصویر زمین مرجع شده سی‌دی از تصویر که مربوط به فصول و سال‌های مختلف نشانه‌های مختلف استفاده شد (آرخی، 1394). در این بررسی از روش تصویر رادیومتریک نسبی، کاهش تیرگی پدیده استفاده شد. به‌منظور طبقه‌بندی تصویر ماهواره‌ای در مرحله پیش‌بردارش از وضعیت ارائه شده توسط شکل‌های عصبی استفاده شد. شکل‌های عصبی پیش‌ترون می‌تواند یک نظر را به نظر برساند. شکل‌های با فاقدن‌ها برای رنگ‌های مختلف و برای رنگ‌های خروجی است. روش پاسخ‌گیری در گروه‌نامه ناپذیر. برای این کار می‌تواند به شکل‌های خروجی تهیه شود. به‌منظور پاسخ‌گیری در گروه‌نامه ناپذیر. برای این کار می‌تواند به شکل‌های مورد نیاز بود. به‌منظور انتخاب صحیح نمونه‌های تعلیمی علاوه بر ثبت نمونه‌های تعلیمی به‌منظور انتخاب دقت از شاخص تراکم پوشش گیاهی (NDVI) به‌منظور انتخاب صحیح نمونه‌های تعلیمی علاوه بر ثبت نمونه‌های تعلیمی به‌منظور انتخاب دقت از شاخص تراکم پوشش گیاهی (NDVI) استفاده شد. در این شاخص مناطق با پوشش گیاهی به‌دست‌آمده، قابل‌شناسی هستند. مقدار این شاخص دارای دامنه تغییری بین 1 و -1 است که مقدار مثبت آن به عنوان پوشش گیاهی عنی آرزش نزدیک به مقدار صف‌ی مرتب به مناطق بدون پوشش گیاهی و ارزش نزدیک -1 به‌انگار محل‌های خیس و آب است (قهفرخی و همکاران، 1382 محرکی و همکاران، 1388) مقدار منفی آن به معنی مناطق بدون
پوشش است. به‌منظور اجرای روش، شبکه عصبی برای طبقه‌بندی تصاویر ماهواره‌ای مورد استفاده قرار گرفت. این طبقه‌بندی برای نمونه‌های عالی‌ک�یت توسط کاربران را با‌ندهای مورد استفاده در تحلیل تعدادی از درک‌ریزی‌های مختلف ارتباط برای نشان‌دهی صورت یافت. پیش از این، طبقه‌بندی تصویر ماهواره‌ای از متریک‌های سیمای سرزمین برای تحلیل استفاده شد. ابتدای و تسویه سنجش‌های مکانی به‌عنوان نمایه‌های کمی سیمای سرزمین و امکان محاسبه آن‌ها از نقشه‌های کاربری و پوشش حاصل از داده‌های ماهواره‌ای، تحلیل شد. (Herold et al., 2005). سنجش‌های پهپاره را برای مقایسه وضعیت سیمای سرزمین‌های مختلف ایجاد کردند. سنجش‌های سیمای سرزمین به شاخه‌های تحویل‌یافته برای یافتن کوکشهای ناشی‌سازی‌شده حضور دارند. (McGarigal et al., 2002). این سنجش‌های به‌عنوان شاخ‌های توصیف و کمی سازی الگو، ترکیب‌بندی و پیوندی ساخت سیمای سرزمین، در مقایسه‌های زمانی و مکانی به‌حساب می‌رود و به‌طور کلی به‌دست می‌آید. سنجش‌های غیر مکانی ترکیب سیمای سرزمین مورد تعداد لکه‌ها نوع کاربری با نسبت آنها به سطح کل سیمای سرزمین نرخ میدهند. سنجش‌های مکانی خصوصیات برای پرکش و پیوندی انت‌و با کلاس و سیمای سرزمین محاسبه می‌شود (Garigal and Marks., 1995).

جدول ۱: نوع سنجش‌ها و تاریخ اخیر تصویر.

<table>
<thead>
<tr>
<th>سال اخیر تصویر</th>
<th>محل</th>
<th>گذشته</th>
<th>۱۹۹۱/۱۱/۰۵</th>
<th>۱۹۹۲/۱۰/۲۸</th>
<th>۲۰۰۴/۱۱/۱۴</th>
<th>۲۰۱۳/۰۸/۲۷</th>
<th>۲۰۱۳/۰۸/۲۷</th>
<th>۲۰۱۶/۰۸/۲۷</th>
</tr>
</thead>
<tbody>
<tr>
<td>مکان</td>
<td>TM</td>
<td>ETM</td>
<td>ETM*</td>
<td>Land sat 8. oli</td>
<td>ETM*</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

جدول ۲: سنجش‌ها، علامت‌های اختصاصی و محدوده تغییرات آن‌ها.

<table>
<thead>
<tr>
<th>سنجش‌ها</th>
<th>محدوده تغییرات</th>
<th>علامت‌های اختصاصی</th>
<th>تابع لگاریت</th>
<th>اسم نام‌های</th>
<th>واحد</th>
<th>نام فارسی</th>
<th>تابع لگاریت</th>
<th>اسم نام‌های</th>
</tr>
</thead>
<tbody>
<tr>
<td>np</td>
<td>عدد لکه‌ها</td>
<td>np</td>
<td>نام‌های سنجش‌ها</td>
<td>np</td>
<td>نام‌های سنجش‌ها</td>
<td>np</td>
<td>نام‌های سنجش‌ها</td>
<td>np</td>
</tr>
<tr>
<td>lpi</td>
<td>نام‌های سنجش‌ها</td>
<td>lpi</td>
<td>نام‌های سنجش‌ها</td>
<td>lpi</td>
<td>نام‌های سنجش‌ها</td>
<td>lpi</td>
<td>نام‌های سنجش‌ها</td>
<td>lpi</td>
</tr>
<tr>
<td>pd</td>
<td>نام‌های سنجش‌ها</td>
<td>pd</td>
<td>نام‌های سنجش‌ها</td>
<td>pd</td>
<td>نام‌های سنجش‌ها</td>
<td>pd</td>
<td>نام‌های سنجش‌ها</td>
<td>pd</td>
</tr>
<tr>
<td>shdi</td>
<td>نام‌های سنجش‌ها</td>
<td>shdi</td>
<td>نام‌های سنجش‌ها</td>
<td>shdi</td>
<td>نام‌های سنجش‌ها</td>
<td>shdi</td>
<td>نام‌های سنجش‌ها</td>
<td>shdi</td>
</tr>
<tr>
<td>lsi</td>
<td>نام‌های سنجش‌ها</td>
<td>lsi</td>
<td>نام‌های سنجش‌ها</td>
<td>lsi</td>
<td>نام‌های سنجش‌ها</td>
<td>lsi</td>
<td>نام‌های سنجش‌ها</td>
<td>lsi</td>
</tr>
<tr>
<td>contagion</td>
<td>نام‌های سنجش‌ها</td>
<td>contagion</td>
<td>نام‌های سنجش‌ها</td>
<td>contagion</td>
<td>نام‌های سنجش‌ها</td>
<td>contagion</td>
<td>نام‌های سنجش‌ها</td>
<td>contagion</td>
</tr>
</tbody>
</table>

jweb.iauahvaz.org
در این مطالعه به منظور بررسی روند تغییرات ذیل آب و دوده به تالاب از روند تحلیل من-کننال که توسط من (Kendall) و کننال (Man) ارائه شد بر پایه رتبه‌دهی در یک سری زمانی استوار است. این آزمون برای بررسی عدم وجود روند در مقاله و بدون روند در سری زمانی هیدرولوژیکی و هواشناسی مورد استفاده قرار می‌گیرد (مدرسی و همکاران، ۱۳۸۹). مزیت این آزمون نسبت به سایر آزمون‌های تحلیل روند استفاده از رتبه داده‌ها در سری زمانی بدون در نظر داشتن مقدار منتفی‌های است. که به دلیل وجود چنین خاصیتی، می‌توان از این آزمون برای داده‌های دارای جدولی استفاده کرد و داده‌ها تایید در حال توزیع خاص دراین (Turgay and Ercan، ۲۰۰۵).

در این آزمون اگر مجموعه مشاهدات مورد نظر باشد، انگار داریم:

\[S = \sum_{k=1}^{n-1} \sum_{j=k+1}^{n} sgn(x_j - x_k) \]

رابطه ۱:

\[sgn(x) = \begin{cases} +1 & \text{if } (x_j - x_k) > 0 \\ 0 & \text{if } (x_j - x_k) = 0 \\ -1 & \text{if } (x_j - x_k) < 0 \end{cases} \]

رابطه ۲:

در رابطه بالا:
- \(n \) تعداد داده‌ها.
- \(t \) تعداد داده در هر گروه است.
- مانند به عنوان داده‌ها. منظور از گروه این است که اگر از یک مقادیر داده، بیشتر از یکی وجود داشته باشد در این مقادیر مساوی، تشکیل یک گروه را می‌دهند و تعداد
- این مقادیر مساوی در گروه (Z) دارای توزیع ترمال بوده و از رابطه زیر به دست می‌آید (Salmi et al., ۲۰۰۲):

\[E(S) = 0 \]

رابطه ۳:

\[Var(S) = \frac{n(n-1)(2n+5)-\sum_{i=1}^{m} (t_i-1)(2t_i+5)}{18} \]

رابطه ۴:

در رابطه بالا:
- \(n \) تعداد داده‌ها.

\[Z = \begin{cases} \frac{S-1}{\sqrt{Var(S)}} & \text{if } S > 0 \\ 0 & \text{if } S < 0 \end{cases} \]

رابطه ۵:

این آزمون یک آزمون دوطرفه است؛ بنابراین در صورتی که

\[|Z| \leq Z_{\alpha/2} \]

باشد در سطح اطمینان \(\alpha \) فرض صفر بی‌ربطیتی می‌شود و در غیر این صورت فرض صفر رد خواهد شد. در حالت رد فرض صفر (وجود روند)، در صورتی که \(S > 0 \) باشد، سری زمانی دارای روندی مثبت (صعودی) و در صورتی که \(S < 0 \) باشد، سری زمانی دارای روندی منفی (نزولی) خواهد بود.
نتیجه

به‌منظور اجرای مدل شبکه عصبی بر روی نمونه‌های تهیه‌شده برای معماری شبکه را نمایش می‌دهد. پس از طبقه‌بندی ماهواره‌ای با استفاده از نمونه‌های تهیه‌شده دروس طبقه‌بندی به روش شبکه عصبی نموداری با مقادیر مختلف خطای آموزش و پذیرش در زمان اجرای مدل پدیدارس می‌شود که لازم است در مرحله اجرای طبقه‌بندی مقادیر این دو نمودار به‌کام نگیرد ترتیب‌های ایده‌آل و خط سیزنتن نیز در زیر به‌صورت خودکار برای شبکه تهیه شده، (جدول ۳) جدول زیر مقدار خروجی شهاب به‌نیاز پارامترهای ایجاد شبکه به‌پیدا می‌آید.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>تعداد نمونه‌های ورودی</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>تعداد نمونه‌های مخلوق</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>تعداد مدل</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>سرعت یادگیری</td>
<td>0.05</td>
<td>0.05</td>
<td>0.05</td>
<td>0.05</td>
</tr>
<tr>
<td>نحوگاه</td>
<td>0.00001</td>
<td>0.00001</td>
<td>0.00001</td>
<td>0.00001</td>
</tr>
<tr>
<td>تعداد تکرار</td>
<td>10000</td>
<td>10000</td>
<td>10000</td>
<td>10000</td>
</tr>
<tr>
<td>میزان صحیح قابل قبول</td>
<td>89.9%</td>
<td>89.9%</td>
<td>89.9%</td>
<td>89.9%</td>
</tr>
<tr>
<td>میزان خطای قابل قبول</td>
<td>10.1%</td>
<td>10.1%</td>
<td>10.1%</td>
<td>10.1%</td>
</tr>
</tbody>
</table>
تجزیه و تحلیل ترکیب سیمای سوزریمی در تالاب برگ فیوزه با استفاده از دورکاپا/کریم و میرسرگری

شکل ۳: نتایج حاصل از آموزش و خطای شبکه عصبی.

صحبت نقشه‌های طبقه‌بندی شده با استفاده از ماتریس خط ارزیابی شد. به ترتیب تعداد ۴۵ و ۴۰ نقطه کنترل زمینی با استفاده از GPS و Omission رنگی کادیب و مناطقی که طی زمان تغییر نکردند بودند ارزیابی شدند. سپس ضرایب کاپا در منطقه، کاپا کل و خطای Commission محاسبه شدند. جدول ۴. ۵ و ۷ ماتریس خطای پوشش‌های طبقات، شکل ۴ و ۵ ترتیب طبقات و مساحت طبقات تالاب را نمایش می‌دهد.

جدول ۴: ماتریس خطای نقشه پوشش سال ۱۹۹۱

<table>
<thead>
<tr>
<th>کلیه</th>
<th>خطای کمپرسیون</th>
<th>مجموع</th>
<th>اراضی مرطوب</th>
<th>پوشش گیاهی تالاب</th>
<th>اراضی کم تراکم</th>
</tr>
</thead>
<tbody>
<tr>
<td>آب</td>
<td>۷۶۱۸۷۸</td>
<td>۱۵۴۴ مجموع</td>
<td>۴۵۳۸۷۰</td>
<td>۵۱۴۲ مجموع</td>
<td>۴۵۳۸۷۰</td>
</tr>
<tr>
<td>اراضی کم تراکم</td>
<td>۴۵۳۸۷۰</td>
<td>۱۶۳۳ مجموع</td>
<td>۴۵۳۸۷۰</td>
<td>۵۱۴۲ مجموع</td>
<td>۴۵۳۸۷۰</td>
</tr>
<tr>
<td>پوشش گیاهی تالاب</td>
<td>۴۵۳۸۷۰</td>
<td>۱۶۳۳ مجموع</td>
<td>۴۵۳۸۷۰</td>
<td>۵۱۴۲ مجموع</td>
<td>۴۵۳۸۷۰</td>
</tr>
<tr>
<td>اراضی مرطوب</td>
<td>۴۵۳۸۷۰</td>
<td>۱۶۳۳ مجموع</td>
<td>۴۵۳۸۷۰</td>
<td>۵۱۴۲ مجموع</td>
<td>۴۵۳۸۷۰</td>
</tr>
<tr>
<td>کلیه</td>
<td>۷۶۱۸۷۸</td>
<td>۱۵۴۴ مجموع</td>
<td>۴۵۳۸۷۰</td>
<td>۵۱۴۲ مجموع</td>
<td>۴۵۳۸۷۰</td>
</tr>
</tbody>
</table>

jweb.iauahvaz.org
جدول ۵: ماتریس خلاي نقشه پوشش سال ۲۰۰۴.

<table>
<thead>
<tr>
<th>داده‌ها و واقعیت زمینی</th>
<th>خلاي کم‌پسیون</th>
<th>مجموع</th>
</tr>
</thead>
<tbody>
<tr>
<td>اراضی کم‌تراکم</td>
<td>۹۶۰۰۱۵۰۲</td>
<td>۷۸۰۱۴۹۷۵</td>
</tr>
<tr>
<td>اراضی کم‌تراکم اب</td>
<td>۷۸۳۷۱۹</td>
<td>۶۸۰۷۱۴۹۷۵</td>
</tr>
<tr>
<td>اراضی کم‌تراکم ووشش‌گاهی تالاب</td>
<td>۲۳۸۲۱۹</td>
<td>۲۲۸۲۱۹</td>
</tr>
<tr>
<td>مجموع</td>
<td>۹۶۰۰۱۵۰۲</td>
<td>۷۸۰۱۴۹۷۵</td>
</tr>
</tbody>
</table>

جدول ۶: ماتریس خلاي نقشه پوشش سال ۲۰۱۳.

<table>
<thead>
<tr>
<th>داده‌ها و واقعیت زمینی</th>
<th>خلاي کم‌پسیون</th>
<th>مجموع</th>
</tr>
</thead>
<tbody>
<tr>
<td>اراضی کم‌تراکم</td>
<td>۹۶۰۰۱۵۰۲</td>
<td>۷۸۰۱۴۹۷۵</td>
</tr>
<tr>
<td>اراضی کم‌تراکم اب</td>
<td>۷۸۳۷۱۹</td>
<td>۶۸۰۷۱۴۹۷۵</td>
</tr>
<tr>
<td>اراضی کم‌تراکم ووشش‌گاهی تالاب</td>
<td>۲۳۸۲۱۹</td>
<td>۲۲۸۲۱۹</td>
</tr>
<tr>
<td>مجموع</td>
<td>۹۶۰۰۱۵۰۲</td>
<td>۷۸۰۱۴۹۷۵</td>
</tr>
</tbody>
</table>

جدول ۷: ماتریس خلاي نقشه پوشش سال ۲۰۱۶.

<table>
<thead>
<tr>
<th>داده‌ها و واقعیت زمینی</th>
<th>خلاي کم‌پسیون</th>
<th>مجموع</th>
</tr>
</thead>
<tbody>
<tr>
<td>اراضی کم‌تراکم</td>
<td>۹۶۰۰۱۵۰۲</td>
<td>۷۸۰۱۴۹۷۵</td>
</tr>
<tr>
<td>اراضی کم‌تراکم اب</td>
<td>۷۸۳۷۱۹</td>
<td>۶۸۰۷۱۴۹۷۵</td>
</tr>
<tr>
<td>اراضی کم‌تراکم ووشش‌گاهی تالاب</td>
<td>۲۳۸۲۱۹</td>
<td>۲۲۸۲۱۹</td>
</tr>
<tr>
<td>مجموع</td>
<td>۹۶۰۰۱۵۰۲</td>
<td>۷۸۰۱۴۹۷۵</td>
</tr>
</tbody>
</table>
تحلیل تخریب سرمای سرزمین در تالاب بزرگ هویزه با استفاده از دورکاپی / کرمی و میرسنجی

شکل ۴: نقشه پوشش طبقات تالاب بزرگ هویزه.

شکل ۵: تغییرات طبقات پوشش تالاب برحسب هکتار در بام زمانی موردطالعه.

پس از طبقه‌بندی تصاویر ماهواره‌ای موردبررسی در این پژوهش، به‌منظور درک صحیح سیمای سرزمین تالاب از سنجش‌های سیمای سرزمین که پیشتر در جدول ۲ به آن اشاره شده بود استفاده شد. جدول ۷ مقادیر مختلفی این سنجش‌ها را نمایش می‌دهد.
جدول 7: مقادیر سنجه‌های موردنیزرسی.

<table>
<thead>
<tr>
<th></th>
<th>2004</th>
<th>2013</th>
<th>1991</th>
<th>نام سنجه</th>
</tr>
</thead>
<tbody>
<tr>
<td>NP</td>
<td>238.6</td>
<td>237.9</td>
<td>234.0</td>
<td></td>
</tr>
<tr>
<td>LPI</td>
<td>13/03</td>
<td>13/01</td>
<td>13/01</td>
<td></td>
</tr>
<tr>
<td>PD</td>
<td>17/87</td>
<td>15/54</td>
<td>15/54</td>
<td></td>
</tr>
<tr>
<td>SHDI</td>
<td>1/12</td>
<td>1/12</td>
<td>1/12</td>
<td></td>
</tr>
<tr>
<td>LSI</td>
<td>1/18</td>
<td>7/21</td>
<td>7/21</td>
<td></td>
</tr>
<tr>
<td>CONTAG</td>
<td>39/88</td>
<td>39/88</td>
<td>39/88</td>
<td></td>
</tr>
</tbody>
</table>

بررسی روند تغییرات آب تالاب و بوشش، آن تنها با استفاده از سنجه‌های سرمای سرزمین و تصاویر طبقه‌بندی شده تالاب قابل تفسیر نیست. بلکه هیزمان باعث به سایر عوامل نیز پیوستگی کرده. لذا در این برسی به توجه تصویر منطقی و صحیح تأثیر حاصل از طبقه‌بندی تصاویر از دیگر روش‌های استفاده شده است. روند تغییرات آب و رطوبت به تالاب به توسط آماره من-کنترل انتزاع کری استفاده شده است.

شکل 6: تغییرات دبی ایستگاه هیدرومنتری حمیدیه.

شکل 7: تغییرات دبی ایستگاه هیدرومنتری هوتقل.
بحث و نتیجه‌گیری

تالاب بزرگ هویزه یکی از تالاب‌های باقی مانده از مجموعه تالاب‌های بین‌الهیرین است که در چند سال اخیر با وجود خشک‌شدن گویای غروب در کشور ترکیه (کوچ و همکاران، 1995)، و عدم رعایت حیات آب، آب دیگری نبود که کاهش دیب آب و رویه تالاب شده از نظر فلزات و همکاران (1390) در آب‌های مصرفی جریان و رویه به تالاب از طریق رویه تالاب که قبل از احداث سد با م修士ه سال 550 میلیون متر مکعب بوده که این رقم در سال 1372-1381 به 470 میلیون متر مکعب کاهش بیدار کرده است، بررسی تغییرات دبی تالاب مردمی حمیدیه (1379-1391) و هفوف (1365-1391) با استفاده از اzm از کنال و شاخه بعضی گزگر سنگ توانایی که مقاقدی رویه تالاب که پس از احداث سد به سال 1372-1381 کاهش می‌نمایدی داشته است که این رقم در استفاده از فلزات پیوندی دریبری مهندسی و دارای هیدرولوژی است، تغییرات یوشش گیاهی تالاب نیز بانگر شرایطی متوقف است به یک یا دو مقدار این طبقه پوشه نیز به‌تسامی آب تالاب نوسان داشته و رودی افراشی را دنبال کرده است، با توجه به تصویر دکتر کاذب سال‌های 1363 و 1364، شرایطی نیز بیشتری در آب‌های تالاب حاکم، این زمانی از گونه تحالی بی‌کاری بود، بقیه گونه تحالی تالاب ۵ حوضه‌ها خوزستان از جمله بین جنوب تشییع شد، در سال 1389 وزارت نفت به‌منظور انجام فعالیت‌های حفاظتی و به‌پردازی با مسدود کردن درجه‌های خروجی از مخزن شماره ۲ به شماره ۳ و نیز انحراف زمینه گاه‌های کشوری وارد به حوضه‌شماره ۴ عمل‌اکل حوضه‌ها یا مخازن ۳ و ۴ و ۵ را بطور کامل شکست کرد (سازمان حفاظت محیطی، 1396) که خود منجر به کاهش یکپارچه این اکوسیستم شده است؛ اما باگشته زمان تالاب ۲۰۱۲ تا زمان حاکم در سال 1363 می‌تواند به تالاب حاکم شده است، وجود بیانین نفت و پره‌پردازی‌های واردات نفت را سیاست‌بندی جریان مه‌مخته‌های عامل تغییر در سیستم تالاب و یکی از شبدیدترین شباهت‌های هره‌که داشته است، هم‌ارکار با کاهش این دو سطح از طبقات پوشش تالاب حاکم خاصی که تراکم که همان زمین‌های راهی‌گیری رویه افراشی داشته است، سنجش (NP) تعادل کل لیژه‌های پوشش موجود در سیستم سرزمین تالاب را نمایش می‌دهد که در این بررسی مقدار این سنجش در مجموع روندی که کاهش داشته است، سنجش تراکم یک (P) نیز بانگر رویدن کاهشی در تراکم لیژه‌های مورد بررسی در تالاب است که این فاقدی بانگر کاهش لیژه‌ها در سیستم سرزمین است، نتایج سنجش بزرگ‌ترین لکه سیستم سرزمین (LPI) که درصد مساحت لکه غالب با بزرگ‌ترین لکه در سیستم سرزمین نسبت به هر مساحت سیستم سرزمین را نمایانگر به یافته بانگر کاهش افراشی است. نتایج بانگر کاهش بزرگ‌ترین لکه غالب در منطقه و در مرحله بعدی بانگر افراشی در لکه غالب در پایه زمین 2013 و 2016 است، سنجش شامل سیستم سرزمین

جدول۸: روند تغییرات دبی ایستگاه‌های روی رودخانه کرخه (تالاب بزرگ هویزه)

<table>
<thead>
<tr>
<th>سال ایستگاه</th>
<th>Test z</th>
<th>Sen's slope</th>
<th>Significant</th>
</tr>
</thead>
<tbody>
<tr>
<td>1391-1392</td>
<td>-4/3</td>
<td>0/3</td>
<td>0/3</td>
</tr>
<tr>
<td>1392-1393</td>
<td>-4/7</td>
<td>0/3</td>
<td>0/3</td>
</tr>
<tr>
<td>1393-1394</td>
<td>-4/9</td>
<td>0/3</td>
<td>0/3</td>
</tr>
<tr>
<td>1394-1395</td>
<td>-4/7</td>
<td>0/3</td>
<td>0/3</td>
</tr>
<tr>
<td>1395-1396</td>
<td>-4/9</td>
<td>0/3</td>
<td>0/3</td>
</tr>
</tbody>
</table>

jweb.iauahvaz.org
فقط از طرفی‌ها می‌تواند ویژه‌ای پیش‌آمده‌ای در کل سیمای سرزمین‌ها بیافزایی یافته باشد که این امر فهم می‌کند. یک یکی از این کل‌های بی‌شکلی از سیمای سرزمین، پیش‌آمده‌ای نسبت به درجه‌ی تغییر است. این شاخص نشان می‌دهد این ابعاد در سال 2000-2011 بیشترین مقدار را داشته است و از سال 2013 بیشترین قدر را داشته است. بیشترین مقدار به شرحی در سیمای سرزمین‌ها در سال 2004 در منطقه حادثه‌ای است که می‌تواند ترازیوری رگی گذرا مربوط بیشترین مقدار در سال 2 کل‌های بی‌شکلی و گیاهی مشاهده است. شرایط سیمای سرزمین (SHDI) که پیش‌آمده‌ای در منطقه‌های تغییرات آبیاری یافته‌ای نشان دهنده یک شکل مشابه تغییرات بی‌شکلی در سیمای سرزمین از آن تکنیک از این دیدگاه، نسبت به درجه‌ی تغییرات بی‌شکلی در منطقه‌ها در سال 2004. این مطالعه از این کل‌های بی‌شکلی است که در سال 2014 متوسط به سه‌هفته دو باری فرورفت. می‌تواند تفاوت در سطح پوشش پودر داشته باشد که در سال 1991 تحت عنوان تأثیر بر پوشش‌گاهی در سال 2013 تا 2014 به‌طور مداوم در سطح پوششی فیتیکی (1395) تحت عنوان تأثیر بر پوشش‌گاهی در سال 2014 تا 2014 به‌طور مداوم در سطح پوششی شاخص ذوب که با استفاده از ماهواره مودیس انجام گرفت. نتایج نشان داد که محدوده آب‌های در سال 2011

در سال 2014 میزان نشان داده که در سال 2014 MFP (1395) تحت عنوان تأثیر بر پوشش‌گاهی در سال 2014 تا 2014 به‌طور مداوم در سطح پوششی شاخص ذوب که با استفاده از ماهواره مودیس انجام گرفت. نتایج نشان داد که محدوده آب‌های در سال 2011
تحلیل تغییرات سرمزه در بازیابی هویه با استفاده از دورگاهی / کریم و میرسنجری

افراز شاخه تراکم پوشش گیاهی و غلت فشیرده رابطه مکوس و ماندار وجود دارد. کشورهای ترکیه، عراق و ایران به‌عنوان سه کشور از درگیر و طبیعه روزنامه‌های ترکیه دارای رابطه خاصی با کشورهای مختلف مطرح و موردپرداز قرار گرفته‌اند، اما روابطه‌های دوکشورهای مذکور در سال‌های اخیر از لحاظ سیاسی، محیطی و اقتصادی منتفی از رابطه بین دو کشور می‌باشد.

در این باره، تصویر ماهواره‌ای استفاده شده است که از سال ۱۳۸۲ با نقشه‌سازی سه‌بعدی گرفته شده است. این نقشه سه‌بعدی با بهترین روش تکنولوژی و فناوری اطلاعاتی تهیه گردیده است.

نتایج نشان می‌دهد که مدیریت سرمایه سرمزه تراکم بزگ هویه به‌صورت متفاوت و نسبت به کشورهای دیگر مقایسه می‌گردد.

منابع

جریان و دیگر نشریات، ۱۳۸۲، آمارسازی برای ویژه‌ای کاربری اراضی با پردازش و تجزیه ماهواره‌ای با استفاده از دو ایرانیان/کریم، محمد: صفحات ۲۸۰-۲۸۲.

پیشبینی‌های ماهواره‌ای: طبقه‌بندی، در آب و هوای ترکیه و پاسخگویی به سوالات محیطی و اقتصادی/کریم، محمد: صفحات ۲۸۳-۲۸۴.

پیش‌بینی‌های ماهواره‌ای: طبقه‌بندی، در آب و هوای ترکیه و پاسخگویی به سوالات محیطی و اقتصادی/کریم، محمد: صفحات ۲۸۵-۲۸۶.

پیش‌بینی‌های ماهواره‌ای: طبقه‌بندی، در آب و هوای ترکیه و پاسخگویی به سوالات محیطی و اقتصادی/کریم، محمد: صفحات ۲۸۷-۲۸۸.

پیش‌بینی‌های ماهواره‌ای: طبقه‌بندی، در آب و هوای ترکیه و پاسخگویی به سوالات محیطی و اقتصادی/کریم، محمد: صفحات ۲۸۹-۲۹۰.

پیش‌بینی‌های ماهواره‌ای: طبقه‌بندی، در آب و هوای ترکیه و پاسخگویی به سوالات محیطی و اقتصادی/کریم، محمد: صفحات ۲۹۱-۲۹۲.
در دبیرخانه ریکارد در اسرازی، فصلنامه بوم‌شناسی کاربردی، سال ۹۶، شماره ۹، صفحه ۱۸۶-۱۳۹۱.

چره‌ی پلوچی، ل، زره‌ی، م، مک‌محمدی، ب، ۱۳۹۱، بررسی تغییرات زمین‌های مظهری، تا ۱۳۷۸، فصلنامه کاربردی و GIS در مطالعه شیمی‌سازی سال سوم، شماره ۴، صفحه ۳۳-۴۵.

زره‌ی، ف، و کفان، ف، ۱۳۹۱، ارزیابی تغییرات سطح آب‌پوش‌های تابی، این فنازل و پهلوی، در سال‌های ۱۳۷۸-۱۳۷۹ و ۱۳۹۰، گزارش وزارت نیروی انتظامی، جمهوری اسلامی ایران.

سازمان حفاظت محیط‌زیست، ۱۳۸۴، تغییرات در کوه‌های ایران در مدت زمان ۱۹۹۱ تا ۲۰۰۷.

سیبزبانی، ف، دشتی، س، و مرادی، ش، م، هرکی، ۱۳۹۲، آمار‌های زمین‌های مظهری، بررسی تغییرات سطح آب‌پوش‌های تابی در سال‌های ۱۳۷۸-۱۳۸۴، گزارش وزارت نیروی انتظامی، جمهوری اسلامی ایران.

فهروی، ع، فاقدانی، ع، و فرآی، م، ۱۳۹۲، کمیتی‌کنی، مکانی سیان‌ها در زیست‌گاه سیب‌خوران، دبیرخانه ریکارد در اسرازی، فصلنامه بوم‌شناسی کاربردی، سال ۹۶، شماره ۹، صفحه ۱۸۶-۱۳۹۱.

McGarigal, K., Cushman, S. A., Neel, M. C. and Ene, E., 2002. FRAGSTATS: Spatial Pattern Analysis Program for Categorical Maps, Computer software program produced by the authors at the University of Massachusetts, Amherst. Available at: http://www.umass.edu/landeco/research/fragstats/fragstats.html

