چکیده

با فراگر شدن شیمی‌های نرم‌افزاری اقیمی متغیر، این امکان به وجود آمده است تا سازمان‌های گوناگونی همچون تأثیر بر آب‌پری نهایت جهت بروز کارکردن آن بند تا نتایج بر سر این اقیمی متعاقب N馄.
مدل سایز هوشمندانی تأثیر دریاچه زریبار بر میزان عرضه و تغذیه انرژی مناطق بیرامون/ روش و گزارشکور

تحقیق کاشت آب دریاچه‌ها و یا آب‌ریزه‌ها از یکی از ارزشمندترین پدیده‌های محیطی می‌باشد. در این پژوهش مراجعه اکثر ایران با توجه به قرارگیری بروی کمربند خشک و نیمه‌خشک جنگل شیرین شده دریاچه‌ها یکی از نتایج مهم‌ترین نظر مهندرسی ارمنی و غرب برای سال‌های اخیر می‌باشد.

اموزه با گسترش شدن ترم‌فرآیندهای شیب‌سازی اقلیم منطقه‌ای، این امکان با وجود آباده است تا طرح‌های مخاطف تأثیر بر کارگاه و یا تغییرات رنگ از جوی نوری شیب‌سازی در نمای آب دریاچه‌ها داشته باشد. این موضوع در اجزای مدل، از طریق‌زناهای بی‌پراکنده و سریع استفاده می‌کند که وضعیت جو و شرایط سیالات حاکم بر آن با مدل‌های پیچیده از راه زبان‌های رتبه‌بندی مدل‌سازی برای وابسته به کارگرای علوم فیزیک و روش‌های سیالات در طراحی و ترسیم نموده و راه‌حل‌های منطقه‌ای راه حل‌های متنوعی مشخص، شرایط جو در آب‌ندی پیش‌بینی می‌گردد (2005).

در جو میان پیش‌بینی پیداهای ماهی بدل شویی مدل‌سازی دینامیک و آماری انجام می‌گیرد. مدل‌های دینامیک معمولاً بر منابع قوانین فیزیکی انجام می‌پذیرد. نتایج دقیق این قوانین با داشت که ضروری بخش خصوصی خود می‌باشد و بافت این قوانین مستلزم به التوازن و انتقال نیز می‌باشد. این سیستم از دیواره‌ها و شرایط سیالات حاکم بر آن با مدل‌های پیچیده از راه زبان‌های رتبه‌بندی مدل‌سازی برای وابسته به کارگرای علوم فیزیک و روش‌های سیالات در طراحی و ترسیم نموده و راه‌حل‌های منطقه‌ای راه حل‌های متنوعی مشخص، شرایط جو در آب‌ندی پیش‌بینی می‌گردد (2005).

تأثیر دریاچه بر پیش‌بینی خشک‌شکنی‌های مجاور آن در داده‌های هواشناسی، نسبت درآی و خشک‌شکنی است که وجود آن، طویلت‌های مناسب و جریان‌های مناسب مطبوع از سوی توده ای به خشک‌شکنی را موجب می گردد، پیش‌بینی در تعیین داده‌ها واحدهای چهار و بعداً می‌کنند بر نوسانات موثری در شاخه‌های تغذیه‌رو. روز منشی، کم‌جنب شرایط وگریزی قرار می‌گیرد. مدل‌های تأثیر دریاچه بر شرایط آب‌یابی نواحی بهرامون می‌باشند. پیش‌بینی واضح مشخص است که پیشنهاد آی آب می‌تواند با استفاده از هیدرولیک کیفیت نواحی پیرامون خود می‌تواند داشته باشد. پیش‌بینی مایل سال زیست‌تولید بر فرض ساختار سیاله‌بندی ایلات مشخص از عامل دریاچه تأثیر می‌پذیرد.

(Changnon, 1972)
قوام و روش‌ها

در پژوهش حاضر، دو طرح واروند متفاوت که یکی تخمک و دیگری از برابر دو دریاچه زیورابی پیش‌آمده مورد توجه و مورد تدوین قرار گرفته است. در حیطه اقیلیم‌شناسی، فرض طرح وارونه‌هایی که در آن دریاچه زیورابی در نظر گرفته می‌باشد مدل‌سازی اغراق آمیزی‌ی پیش‌آمده، زیرا برخی مطالعات همیند، به پژوهش حاضر و مدل‌سازی قرار گرفته است. در این پژوهش حاضر، دو طرح واروند متفاوت استفاده شده که یکی تخمک و دیگری از برابر دو دریاچه زیورابی پیش‌آمده مورد توجه و مورد تدوین قرار گرفته است.

شتاب‌ها

شتاب‌ها از تخمک و دیگری از برابر دو دریاچه زیورابی پیش‌آمده مورد توجه در حیطه اقیلیم‌شناسی است. در این پژوهش حاضر، دو طرح واروند متفاوت استفاده شده که یکی تخمک و دیگری از برابر دو دریاچه زیورابی پیش‌آمده مورد توجه و مورد تدوین قرار گرفته است.

شتاب‌ها

شتاب‌ها از تخمک و دیگری از برابر دو دریاچه زیورابی پیش‌آمده مورد توجه در حیطه اقیلیم‌شناسی است. در این پژوهش حاضر، دو طرح واروند متفاوت استفاده شده که یکی تخمک و دیگری از برابر دو دریاچه زیورابی پیش‌آمده مورد توجه و مورد تدوین قرار گرفته است.

شتاب‌ها

شتاب‌ها از تخمک و دیگری از برابر دو دریاچه زیورابی پیش‌آمده مورد توجه در حیطه اقیلیم‌شناسی است. در این پژوهش حاضر، دو طرح واروند متفاوت استفاده شده که یکی تخمک و دیگری از برابر دو دریاچه زیورابی پیش‌آمده مورد توجه و مورد تدوین قرار گرفته است.
یکی از روش‌های باوربرد مقدار انرژی مورد نیاز جهت گرم کردن و یا سرد کردن محفظه‌های سکوئن انسان، بهره‌گیری از شاخص‌های درجه-رژ گرمایش یا سرمایش که با توجه به یکدیگر و تغییر میانگین‌های دمای روزانه از آستانه معین در دوره مشخص سال به کار می‌رسد و بر اساس درجه-رژ بینان می‌شود. بطور کلی دمای میانگین مختلط Petroalli و همکاران (2011) در واکاوی برخی شاخص‌های اقیانوسی جمجمه‌ها و HDD و شاخص‌های سپسی گردآوری کرده‌اند. در مطالعه‌های دیگر برای بررسی سطح آستانه آبیاری به مدار مشاهده نیاز سرمایشی و سرمایشی انتخاب گردیدند. آستانه آن Al-Hadhrami (Rehman et al., 2013) در 13 درجه سانتی‌گراد می‌باشد. در پژوهشی که برای مقایسه HDD و CDD اندازه‌گیری و محوطه‌های طبیعی، و همکاران (2009) در CDD و HDD در 16 درجه سانتی‌گراد شرایط یافته شدند و 22 درجه سانتی‌گراد RTP با استفاده از مدل پیش‌بینی شده است.

امرا در این مطالعه با استفاده از دستورالعمل آماری (2009) عدد 183 درجه سانتی‌گراد بعنوان میانگین دمای در نظر گرفته شده است. به‌عنوان نمونه، یا در 183 درجه سانتی‌گراد آغاز و نیز بین سرمای زیست حداکثر از دمای 183 درجه سانتی‌گراد شروع می‌شود. جهت محاسبه محدود انرژی مورد نیاز گرمایش و سرمایشی از روابط 1 و 2 استفاده گردید:

\[
\text{CDD} = \sum_1(T - \theta) \quad \theta < T
\]

رابطه 1

\[
\text{CDD} = \sum_1(T - \theta) \quad \theta > T
\]

رابطه 2

در فرمول فوق دما مورد نظر و تاییدیت، دما پایی‌بانشدر در بخشی از مطالعه پیش‌بینی بعنوان آمارسکاری و عدم واقع رونده معنی‌دار برای سرمایه دول جمهوری هندوستان از روش رگرسیون خطی، از آزمون تایپام‌ریک متکن استفاده گردید. این آزمون برای توصیف تغییرات بودن و تعیین روند در سر سه استفاده می‌شود. در این آزمون نتیجه در پیش‌بینی برای مشخص کردن غیر پارامتریک بودن سری‌ها بکار می‌رود. بنابراین رتبه‌های آماری می‌توانند برای توصیف ارتباط و رتبه‌بندی می‌شوند. در این آزمون توصیف بودن داده‌ها با عدم وجود روند مشخص می‌گردد. در صورت وجود روند داده‌ها صفر توصیف بوده و برای تعیین توصیف بودن داده‌ها از رابطه 3 استفاده شده است (Mitchell et al., 1966):

\[
T = \frac{4p}{n(n-2)}
\]

رابطه 3

\[
p = \sum_{i=1}^{n} n_i
\]

که Mجموعه تعداد رتبه‌های برگزشت از رده T که مقدار کندال P که آنها مشاهده شده است ni که بعادوان قرار می‌گیرند بوده و از رابطه 4 به دست می‌آید:

\[
p = \sum_{i=1}^{n} n_i
\]

که مقدار کندال P که آنها مشاهده شده است ni که بعادوان قرار می‌گیرند بوده و از رابطه 4 به دست می‌آید:
نیز تعداد کل سال‌های آماری مورد استفاده است. به منظور سنجم‌بندی معنی‌دار بودن آماره T رابطه 5 محاسبه می‌شود:

\[(T)_t = \pm t_{n-1} \sqrt{\frac{4n+10}{9n(n-1)}} \]

رابطه 5:

که \(t \) برای به‌کارگیری نرمال با استاندارد (Z) با سطح احتمال آزمون است و با سطح احتمال 95 درصد برای \(t \) می‌باشد. در صورت اعمال این مقدار، تعداد آزمون 0.25± می‌شود. با توجه به مقدار به‌کارگیری‌دهد آزمون \(t \) در حالات مختلف بین شرح مشاهده و خواهد شد:

اگر \(T > T_1 \) یا \(T < T_2 \) باشد، هیچ‌گونه روند مهمی در سری‌ها مشاهده نمی‌شود و سری‌ها تصادفی هستند.

مجد اگر \(T > T_1 \) یا \(T < T_2 \) باشد، نشان دهنده روند منفی در سری‌ها و درصدی‌های که توصیف شده در این صفحه بوده.

از انجام‌های هدف این مقاله، شبیه‌سازی و اجرای دو سیستم‌بندی دریابی آب (شناختی) و خشک و دستورالعمل‌های این دو شرایط متفاوت بر تغییرات مؤلفه درجه-روز، غلیظی و سرماخی می‌باشد. از نظر نتایج تحقیق، تحت عنوان TAPM، استفاده شده است. مدل ترمیمی برای مشاهده و رعایتی ضروری و Air Pollution Modeling (TAPM) ابزار است. همکاران (سال 2010) مدل TAPM را به‌عنوان یک مدل اقلیمی منطقه‌ای خودی ساخته‌اند. گونه‌های داده‌های خروجی این مدل با استفاده از اطلاعات داده‌های زمینی و معادلات سطح طرح‌بندی شده است. به‌گونه‌ای که داده‌های خروجی این مدل با استفاده از روش‌ها و فنون آماری می‌تواند به‌طور شتاب‌دهنده و صورت‌گیرنده منطقه‌ای موجود را نشان دهد. علاوه بر این مدل TAPM به‌صورت اساسی چندین جهت جوی، ترمودینامیک، میادین و حالت‌های بارشی، بارشی و بارشی، ارتباط و پرداخت می‌کند. همکاران (سال 2010) می‌تواند و که این مدل توانایی پیش‌بینی هوای و ترکیب آلودگی بارشی و ترکیب آلودگی بارشی را به‌صورت اقلیمی و کنترل از یک‌ساعت را لزومی دارد. به‌طور خلاصه می‌توان داده‌های موردی توسط تکنیک انتقالی TAPM را به‌معنی مطمئنی که بطور کلی در سیستم مدل این شاخص ساده است.

۱. داده‌های انتقالی سطح زمین که از نماهای ترمودینامیک استخراج می‌گردد.

۲. داده‌های تجزیه‌سنجی و شده شبیه‌سنجی و هواشناسی سطح که شامل فشار سطحی هوا، سرعت و جهت باد (مولفه‌های U، V) دما و رطوبت به‌طور مختلف می‌باشد. شاید این حالت توسط TAPM را به‌صورت اقلیمی و دقیق تفکیک داده‌های هم‌مدت 5 کیلومتری می‌باشد.

۳. داده‌های داده‌های انتقالی از سطح زمین و کاربردی از دانشگاه پیش‌بینی و داده‌های سطح (SST) و انواع خاکی (کاربرد و همکاران، 1389) قابل ذکر بوده که داده‌های سطح زمین و کاربردی از دانشگاه پیش‌بینی و داده‌های سطح (SST) و انواع خاکی (کاربرد و همکاران، 1389) قابل ذکر بوده که داده‌های سطح زمین و کاربردی از دانشگاه پیش‌بینی و داده‌های سطح (SST) و انواع خاکی (کاربرد و همکاران، 1389) قابل ذکر بوده که داده‌های سطح زمین و کاربردی از دانشگاه پیش‌بینی و داده‌های سطح (SST) و انواع خاکی (کاربرد و همکاران، 1389) قابل ذکر بوده که D نتایج حاصله از تجزیه‌سنجی تطبیق‌های می‌باشد. جهت خلاصه کردن مطالب و استحکامی به جهت پیشرفت این مدل، توانای یک‌ساعت این داده‌ها را تغییر داده و استحکام موردنظر خود را به مدل بدهد.

علاوه بر این از صورت‌بندی مدل TAPM توانایی در حدی غلط‌های ترمودینامیک نظر به‌عنوان آبی و ارزیابی ترس این عوارض در وضعیت اقلیمی منطقه ترمودینامیک می‌باشد. جهت خلاصه کردن مطالب و استحکامی به جهت پیشرفت این مدل، توانای یک‌ساعت این داده‌ها را تغییر داده و TAPM نمایش داده‌شده است.
نخست، دوستهای مدلی برای چهار رقمی، یک دفعه متغیرهای آماری مانند RMSE، IOA و تغییرات در دو مدل مورد نظر مورد بررسی قرار گرفتند. نتایج نشان داد که در مدل TAPM، تغییرات روزانه در دو مدل مورد نظر متوسط تغییرات روزانه در دو مدل M
جدول ۱: اعتبارسنجی آماری داده‌های مدل TAPM با داده‌های مشاهداتی.

<table>
<thead>
<tr>
<th>رطوبت نسبی</th>
<th>دما ۲۰۰۲</th>
<th>دما ۲۰۰۳</th>
</tr>
</thead>
<tbody>
<tr>
<td>R</td>
<td>RMES</td>
<td>JOA</td>
</tr>
<tr>
<td>۰/۸۰</td>
<td>۱۳/۷۷</td>
<td>۱۲/۷۷</td>
</tr>
</tbody>
</table>

بنابراین می‌توان به این موضوع اشاره‌ها داشت که اختلاف‌کمی‌زایی داده‌های مشاهداتی با خروجی مدل TAPM ملاحظه می‌گردد. به‌طور مثال، تفاوت میان داده‌های پوشش بی‌خوشه ارتفاعی و نوع خاک در داده‌های مشاهداتی باشد. به‌عنوان مثال در تفاوت میان داده‌های پوشش بی‌خوشه، اختلاف‌کمی‌زایی بین نوع خاک در داده‌های مشاهداتی و با اینکه عدم تفاوت میان داده‌های پوشش بی‌خوشه در داده‌های مشاهداتی مشاهده شد. به‌طور مثال در اجراه خاک‌های جنی در خروجی‌ها تأثیر کمتری دارد. اما به‌طور مثال در اجراه خاک‌های جنی در داده‌های مشاهداتی تأثیر بیشتری دارد. ولی به‌طور مثال در اجراه خاک‌های جنی در داده‌های مشاهداتی تأثیر بیشتری دارد.

به‌منظور تکنیک نتایج و ارائه‌های فشرده، این بخش در قالب اختلاف میانگین سه‌گانه ماه به بین سطحی خشک بودن دریاچه نسبت به شرایط واقعی و مورد مسکنی و ارزیابی قرارگرفته است. بنابراین مقایسه متغیر (متغیر) مؤید افزایش (کاهش) دما در سطحی خشک دریاچه نسبت به شرایط واقعی ان دریاچه (پل) در پایان ۱ این فصل دریاچه با شرایط واقعی (پل) ان در طول ماه‌های ماهیوتی مباشد.

الف: سه‌گانه اول (ژانویه تا مارس): همان‌گونه که مشخص است، تغییرات سعی‌ی متوسط دما در ماه‌های زمستان تا مارس به‌سیله شکل ۲ نشان داده‌شده است. در این شکل مشاهده می‌گردد که در فصل زمستان مه‌میزان اثر خشک شدن دریاچه بافت‌های شدید کمیت و معیارهافزایش تعداد و شدت خیزندگی شبانه در مه‌میزان می‌باشد. کاهش محسوس دما در سعی‌ی ماهای نورپرداز شدید نمایانده، همگن بردتر (خوشه‌ئی) شدن منطقه مورد مطالعه و به علت کاهش نسبت خشک شدن دریاچه در سعی‌ی ماهای نورپرداز شده، خشک‌سازی مایع زیادی از تبادل درون‌نرمال با خود درون‌نرمال با خود تبادل درون‌نرمال با خود. همچنین نتایج قابل تأمل دیگر فیزیک شیب تغییرات افت‌زا و کاهش دما در باره‌های عضلانی پس از طول نگهداری دیگر غروب می‌باشد. بر این اساس با توجه به تغییرات ایجادشده، خشک شدن دریاچه شیب تغییرات دمایی روزانه در فصل ازای شاخه داد.

ب: سه‌گانه دوم (آوریل تا ژوئن): سه‌گانه دوم که پایه‌گذاری فصلی پایان است، به‌صورت روند تغییرات مشابه با سه‌گانه آجر اول می‌باشد. در فصل اولیه ژوئن به‌عنوان خشک‌ترین ماه این فصل شیب‌های دریاچه کاهش دما را در سعی‌ی پایه تا سعی‌ی ۳۴ تجربه نموده که برای سعی‌ی ۱ تا ۶ درجه، درجه کاهش دما در این فصل با توجه به سطحی خشک دریاچه شیب تغییرات مایع روزانه می‌باشد. در فصل این فصل ازای شاخه داده است این فصل ازای شاخه داد

ج: سه‌گانه سوم (ژولی تا سپتامبر): در این پایه زمستان که به‌عنوان گرم‌ترین ماه به‌نظر می‌رود در سعی‌ی مورد مطالعه محسوب می‌شود.

در نهایت، شرایط تغییرات دما در سطحی خشک دریاچه نسبت به سطحی خشک برای پایکوبی تفاوت نسبت به فصل مدل ملایم. به‌عنوان مثال در فصل ژوئن و ماهانه خشک دریاچه، شیب تغییراتکلیف کیفی‌سازی می‌باشد. به‌عنوان توجه به کلیه موارد کلیه موارد می‌باشد. در نهایت، شرایط تغییرات دما در سطحی خشک دریاچه نسبت به سطحی خشک نسبت به دریاچه بر آب کاهشی اما از سعی‌ی ۸ تا ۶۴ مقایسه دما در سطحی خشک دریاچه نسبت به دریاچه بر آب

jweb.iauahvaz.org
فلسفی یا مسئله‌سازی تأثیر دریاچه زربار بر میزان عرضه و تغییرات انرژی منطقه پیرامون / روش و نگرش‌گذاری

افرازی قابل توجهی را نشان می‌دهد. اگرچه برای سیستم‌های اکثر فعالیت جزئی ماحولاً می‌گردد و به‌ین ضرورت می‌باشد که در ساعت‌های اصلی، پاداش‌دهی افتتاحیه کافی باشند، به‌ین‌درجه که در ۶۰ ساعت، مقدار افزایشی مناسب‌تر و میزان افزایشی کافی باشد.

۷۲

سیدمه جهارم (اکثر تا نوامبر): با توجه به اینکه این فصل مشکلی از ماهه مورد است. این می‌تواند تغییرات کاهشی در شرایط خشک شدن دریاچه بسیار شبیه‌تری بگذارد که دامنه کاهش دما برای برخی ماهه‌های این فصل در ساعت‌های نسبی بطرف دریاچه است. به‌هم‌روش خروجی مه‌های این‌واقت بیشتر بوده که تا برخی در نوارم ۱۲ ساعت، برای اکثر ۱۴ و در دسامبر، برای ۱۱ ساعت از اوایل ماهه ماهه کاهش دما بیشتر شده‌می‌باشد. در این فصل، منجر افزایش دما برای ساعات روز کاهش یافته و اوقات افزایش دما در ساعات نیم‌زور تم‌کریزیفانت است. این‌واقت بطور این‌واقت نشان می‌دهد گواهی این یک‌واقت است که براساس سلیقه دریاچه خشک در تمام این‌واقت منابعی روزه‌ها دما کاهش خواهید یافت که بیشینه کاهش دما به میزان ۷۵٪ درجه برای نوارم. اکثر و دسمبر به ترتیب با ۱۰۰ و ۱۸۰ در تبیه‌های بعدی قرار دارد. به‌هم‌روش به نظر می‌رسد طول روز، زاویه تابش و بازی‌جمله‌ی‌زیادی پژوهش‌سنجی در افزایش ومیزان ماهه‌های این فصل بسیار تأثیرگذاری می‌باشد.

شکل ۲: اختلاف میان ماهه روزه‌های دریاچه خشک در مقایسه با دریاچه پرآب (شرایط واقعی)

ایزبایی تغییرات در‌زدانت‌شاخه‌درجه روز: بر اساس دوره آماری ۱۹۹۰ تا ۲۰۱۰، مقدار‌وارامدی‌های CDD و HDD برای شهر مریوان مورد ارزیابی قرار گرفت. همان‌گونه که پیش‌تر بینندگان دمای خاکی برای محاسبه‌شاخه‌های فوق‌الذکر مقدار ۴۵ درجه فارنهایت یا /۱/۸ درجه سانتی‌گراد می‌باشد. بر مبنای شکل ۲ مشخص است که از اوایل فصل به‌زمان اواخر تابستان، نیاز به CDD افزایش می‌یابد و مقدار
تفاوت‌های این شاخص به ترتیب برای جدولی با 254 درجه-رون کالری و سپس اگوست با 243 درجه-رون کالری به اوج خود می‌رسد. از طرفی همان‌گونه که سعی و سرمایه‌گذاری در زمینه های باکتریسریوفیل بیشتری داشته باشد، رون CDD به مراتب به‌RICS و با افزایش آبگرمی‌شدن تغییرات بیشتری به‌روز می‌شود. این موقعیت با نتایج های تحقیق مربوطکرده مبنایی به نتایج موجود در تحقیق‌های قبلی بوده و به نتایج حاصل در همین تحقیق نیز یکسان است.

جدول ۲: تغییرات دهه‌ای (decade) به‌روز می‌شوند CDD و HDD بر مبنای آزمون ناپارامتریک مکنداال (۱) و ضریب همبستگی پیرسون (R) (علامت * به معنای دقت مختاره در سطح ۵ درصد می‌باشد)

<table>
<thead>
<tr>
<th>ماه‌ها</th>
<th>HDD</th>
<th>CDD</th>
</tr>
</thead>
<tbody>
<tr>
<td>R</td>
<td>T</td>
<td>R</td>
</tr>
<tr>
<td>Jan</td>
<td>-0.7</td>
<td>0.18</td>
</tr>
<tr>
<td>Feb</td>
<td>-0.3</td>
<td>-0.20</td>
</tr>
<tr>
<td>Mar</td>
<td>-0.3</td>
<td>-0.20</td>
</tr>
<tr>
<td>Apr</td>
<td>-0.3</td>
<td>-0.20</td>
</tr>
<tr>
<td>May</td>
<td>-0.3</td>
<td>-0.20</td>
</tr>
<tr>
<td>Jun</td>
<td>-0.3</td>
<td>-0.20</td>
</tr>
<tr>
<td>Jul</td>
<td>-0.3</td>
<td>-0.20</td>
</tr>
</tbody>
</table>

شکل ۳: میانگین ماهانه نیاز به انرژی در بخش HDD و CDD شهرستان مریوان.
مدل‌سازی هوشمندی تأثیر دریاچه زربیار بر میزان عرضه و تفاوت‌های انرژی مناطق پیروان / روش و گواه‌کننده

<table>
<thead>
<tr>
<th>ماه‌ها</th>
<th>تغییرات دهده</th>
<th>CDD</th>
<th>تغییرات دهده</th>
<th>HDD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aug</td>
<td>0.17</td>
<td>75</td>
<td>0.17</td>
<td>75</td>
</tr>
<tr>
<td>Sep</td>
<td>0.13</td>
<td>75</td>
<td>0.13</td>
<td>75</td>
</tr>
<tr>
<td>Oct</td>
<td>0.13</td>
<td>75</td>
<td>0.13</td>
<td>75</td>
</tr>
<tr>
<td>Nov</td>
<td>0.13</td>
<td>75</td>
<td>0.13</td>
<td>75</td>
</tr>
<tr>
<td>Dec</td>
<td>0.13</td>
<td>75</td>
<td>0.13</td>
<td>75</td>
</tr>
</tbody>
</table>

مهم‌ترین بخش از پژوهش حاضر، مدل‌سازی اثر گرمایش و پرآب بودن دریاچه زربیار بر روی تغییرات شاخص‌های CDD و HDD می‌باشد که در این قسمت به یافته‌های مذکور اشاره گردیده است. این نتایج حاصل خود را برای اولین بار از طریق تحلیل R به‌دست آورده و برای اولین بار این مدل آماده گردیده است.

به طور خلاصه در حدود 80 درجه - روز اضافه خواهد شد.

mweb.iauahvaz.org
بیان و نتیجه‌گیری

از نتایج تحقیق حاضر به‌وکلی، روند تغییرات موئینه HDD و CDD در این دوره اخیر روند قابل ملاحظه‌ای از تغییرات در شاخص HDD و CDD به‌ویژه سه ساله و ۳۵ ساله می‌باشد، در حالی که اخیراً این درجه‌ی زیادی از تغییرات در شاخص HDD و CDD در این دوره‌ها در بخش‌های منطقه‌ای ثبت شده است.

TAPM در سه سالی‌های اولیه مورد ارزیابی قرار گرفته و نتایج آن نشان داد که در بخش‌های اولیه مورد اعتبار قابل قبول می‌باشد. در حالی که با تغییرات موئینه HDD و CDD در سه سالی‌های اولیه، این اثرات نشان داده شده‌است که این فاکتورها می‌توانند به‌عنوان یک مقایسه مفید به‌عنوان یک مقایسه مفید می‌باشند. در این سه سالی‌های اولیه، از تغییرات موئینه HDD و CDD در سه سالی‌های اولیه، این اثرات نشان داده شده‌است که این فاکتورها می‌توانند به‌عنوان یک مقایسه مفید می‌باشند.
منابع

اداره هوشمندی شهرستان مرویان، ۱۳۷۸. گزارش سالیانی وضعیت اقلیمی شهرستان مرویان. بهروزی، ر. ب. و همکاران، ۱۳۸۸. تاثیر اقلیمی نیروهای ساحلی، ج. اول، تهران. ۸۸ ص. فرهنگ‌نامه. م. ۱۳۹۳. مطالعات اقلیمی ایران، سازمان مطالعه و تحقیق کلیه اطلاعاتی ایران (سپت). مرکز تحقیق و توسعه علوم انسانی. ۳۴۸ ص. شمسی، پور ع.، زراعت، و زراعت، ۱۳۹۱. شیمی‌ای اقلیمی تأثیرات تالاب های ایران به منظور پرورش فسائیلی و مخصوصاً ماهی‌ها و ماهی‌پرورشی (پیزنگی تالاب‌ها). صفحات ۱۳۱–۱۱۱.

شمسی، پور ع.، نیک‌نیک‌زاده، ف. و جلایکی، زارعی، ز. ۱۳۷۷. مدل‌سازی عرض و شیپ‌سازی با ورودی عرضی دریاچه ترویجی، پژوهش‌های جغرافیای طبیعی، سال ۴۵ شماره ۱ صفحات ۱۳۴–۱۱۹.

عابدی، ق.، مهمند، ف.، سмаکوشی، ج.، خوش‌خیاطی، ف.، رحیمی، ع. و زوارضا، ب. و جلایکی، پیمان، و محمدی، حسن، ۱۳۸۴. مدل‌سازی تأثیر دریاچه بر مناطق مجاور (مطالعه موردی: مدل‌سازی اقلیمی حوضه جراینگیان با ایجاد دریاچه مصنوعی، محل جمعیت، مهندسی، نیرویی، ایران، سال سوم، شماره ۷ صفحات ۳۳–۲۲.

